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The Synthesis of Coupled Transmission Line
All-Pass Networks in Cascades of 1 to #*

W. J. D. STEENAARTY, MEMBER, IRE

Summary—A homogeneous coupled line configuration realizing
the characteristics of an all-pass network in the distributed network
sense is useful for delay equalization in the UHF range. All-pass net-
works of first and second order are presented, while nth-order net-
works may be realized directly or built out of first- and second-order
networks, analogous to the lumped-constant element network tech-
nique.

I. INTRODUCTION

N THE UHF RANGE, the need for a delay-
]:[ equalizing network has become evident, e.g., for use
in wide-band PCM transmission.

A distributed network consisting of coupled homog-
enous line sections is used here that allows precise
allocation of the singularities in the complex plane and
is the distributed equivalent to the lumped-constant
all-pass network. All-pass networks (in the distributed
sense) of first, second, or nth order are shown to be
realizable in a very simple way. A delay equalization
network of the nth order may be built by using either
an nth-order section or combinations of lower-order
sections, e.g., n/2 second-order sections.
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The basic structure consists of two symmetrical
parallel conductors interconnected at one end and sym-
metrical between ground planes. A single unit of length
I=Nop is a first-order section. A second-order section
consists of a cascade of two sections of equal length and
characteristic impedance, but with different coupling
factors (1], [2].

In Section II of this paper, the equations of a pair of
coupled lines will be considered and the appropriate
boundary conditions introduced. In Section III, the
transfer functions and delay functions are derived. In
Section IV, the synthesis of delay networks consisting
of first- and second-order sections will be discussed.
Details regarding physical construction will be men-
tioned in Section V.
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11. CourLED LINES BETWEEN GROUND PLANES—
GENERAL CONSIDERATIONS

The four-port network of Fig. 1(a) with terminals 3
and 4 disconnected can be represented by the following
fourth order ¢ matrix, [3], [4]:
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Cis, C10 and Cy are the capacities per unit length be-
tween conductors [Fig. 1(b)]. 8=p1 is the electrical
length of the line. For the even and odd modes of
propagation in the case of a symmetrical structure, the
characteristic impedances between one conductor and
ground are
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Expressed in the susceptances per unit length
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The characteristic impedance of one conductor to
ground, expressed in the characteristic impedances for
odd and even modes of propagation is
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B Ve _
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The ratio of even to odd mode impedance of the lines
is expressed by
Zoe Gu—Gn
Zao Gll + G12

p =

(6)

The coupling factor is usually defined as
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The following analysis will assume:

1) The lines are lossless.
2) Each pair of lines is symmetrical; Cio=C2 (or

G11 = Gzz) .
3) The electrical length of cascaded sections is equal;
01=0.= - - - =0,

4) The characteristic impedance of cascaded sections
iS equal; Z()]_: Z(m: L :ZOn-
5) The coupling factor varies; p15ps# * - * po.

For cascaded sections, the ¢ matrix may be formed by
multiplication of the ¢ matrices of the individual sec-
tions (Appendix I). The boundary conditions

U3 = U4
Iy=— 1, (7)

Janvary

are then introduced allowing the derivation of a second-
order y matrix from the fourth-order a matrix. The re-
sulting transfer functions for first-, second- and nth-
order all-pass sections are derived in Appendix I.

III. CourrLeDp LiNE ALL-Pass SEcTioNs oF ORDER 1-%

In the following paragraphs the coordinates of the
singularities in the complex plane and the delay vs fre-
quency function will be derived from the transfer func-
tion.

The First Order Section
The transfer function is [see Appendix I, (31)]

vp —jtané
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for a quarter-wavelength section. Introducing the com-
plex variable

s
=0+ j0 = —(a+ jo) (9)
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in (8) gives
U, Vp — tanh s
— () = ——— ‘ (10)
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The singularities occur at tanh s = + v/p. (11)
In general, the solution of
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In (13) and (14) the 4 sign in the expressions for ¢ and
o applies to the zeros of transmission; the — sign to the
natural modes.

The singularities in the s plane are periodic in wg
(Fig. 2), and for a constant w, (a constant length of the
section) can vary in ¢ only, which corresponds to a
variation in peak height accomplished by varying the
coupling between a pair of lines.

The delay vs frequency function is

T ow
tan — —
d 2w
7(w) = 4)’2 tan™! ——::~—J
dw p
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pcos®— — 4 sin? — —
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For a few typical values of p, the delay as a function of
frequency is shown in Fig. 3.
When wy and « are given, the factor p may be derived

from (14).
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As an example, a few values of @/wy and p are tabulated
in the following:

a/fwy p
.19 |11
0.984 1.2
0.730 1.5
0.561 2.0
0.350 4.0
0.205 | 10.0.

It is possible to combine a number of first-order sec-
tions of different length (different w,) to approximate a
delay function in an interval, ¢.g., o/wy=1 to w/we=2
(wo applies to first section only). The resulting curve
will have a period determined by the least common
multiple of the wy's used.

The use of second-order sections allows for variation
of delay peak height and position for each section within
certain limits. For a number of sections of equal length
(equal wq) a periodic delay vs frequency function,
usually preferred in distributed constant network
synthesis, is thus realized.

The Second Order Section
The transfer function (35)
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The zeros of transmission occur at
joo
tanh s = — + — +/4r — R? (19)
2r 2r
The natural modes occur at
R i
tanh s = — — + — +/4» — R%. (20)
2r 27

The right-hand side of (19) and (20) is complex for

4r — R2 > 0. (21)
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Eq. (21) does not limit the choice of p: and p, greatly X we O
as is shown in Appendix II. Substitution of x 1T T e
R X wo O'g-
r=+ — x | 4 of
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in (12) gives the coordinates of the following singq—
larities: Fig. 4
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In (22) and (23), the + sign for ¢ and « applies to the
zeros of transmission; the — sign to the natural modes. 1o
The singularities in the s plane (Fig. 4) are periodic in \ ¥
wo. 20 5 /
= w, = + ; =1.3 . _/
Wy = @ kwy + 6 with & 1,3, 5, 2 10 // %
It is possible to vary 6 for a constant wo. Thus, the peak P: ',.?z
position and the peak height may be varied for a con- 1.0 12 4 ie 1.8 2.0
stant we, that is, a constant length of the section. o
The delay function Fig. 5
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For typical values of py an d ps, the delay as a function of tan @
frequency is s.hown in Fig. 5. . ‘ N Vol = Vo) + (Ve = D (Vo v/ad)
To determine p; and p, for given singularities (22) = —— - (25)
has to be solved. Substitution of Vit = Dvpipz — (o1 + p2)
, \/E and R = 1ﬁ " ‘1—: Eq. (25) may be solved for ps:
Vv p1 Ve Vs p2 = coth? (2¢). (26)

in (22) gives

tanh o = v/ps — V2 — 1

With ps, ¢ and 6 known, p; may then be found by solv-
ing the quadratic equation in +/p1:
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piltan® 6 4 (202 — 1) + 24/ps(p2 — 1)]
— V0124 p2[(2p2 — 1) tan2 g -+ 1]
+ paftan28 4 2p, — 1 — 24/ps(pe — 1)] = 0.

It is thus possible to determine the physical con-
stants of the second-order sections {rom a given plot of
singularities and to synthesize a delay network consist-
ing of a number of these second-order sections in se-
quence.

For the examples shown in Fig. 5, the values of ¢
and 6 (or a/we and w/wy) with the corresponding values
of p1 and ps are shown in the following table:

@7

T 0 a/wg w/wo pL p2
0.1637 +0.4957 0.1042 14 0.684+ 1 10
0.2406 +0.5647 0.1532 14 0.6405 1 5
0.1637 +0.8763 0.1042 14 0.4421 20 10
0.2406 +0.9764 0.1532 1+ 0.3784 20 5

The nth-Order Section

Eq. (36) indicates the expressions for the matrix
elements of a cascade of »n sections. The transfer func-
tion may be formed, and the delay function derived
from this in very much the same manner as was done
for the first and second order. The effort involved in
each application will have to be weighed against the
possibility of using combinations of first- and second-
order sections to achieve the same result.

The limit of the nth-order system for #— <« and
[—0, keeping the total length constant, leads to the
coupled inhomogeneous line. The equations of the #nth-
order section will be instrumental in obtaining these, as
is done for the directional coupler by Fel'dshtein [4],
[S]. Due to the different (nonperiodic) frequency
characteristic of the transfer function of such a line,
the present study will not include it.

1V. THE Sy~nTHESIS OF DELAY NETWORKS FROM GIVEN
SINGULARITIES IN THE COMPLEX PLANE

When the approximation problem has been solved,
preferably realizing a periodic singularity pattern, the
realization of the delay network (following the familiar
method used for lumped-constant all-pass networks)
only requires identification of each singularity in a
horizontal strip of width wp in the complex plane with a
first- or second-order all-pass section, and computa-
tion of the coupling factor values according to the
method of Section III. It may be necessary to readjust
the singularity pattern if values of p are obtained which
are not realizable with known techniques, e.g., in
coupled line structures using broadside coupled strip-
lines.

The coupled line sections need to be interconnected
either vertically or in the horizontal plane. The char-
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acteristic impedance of the interconnecting stubs should
closely approximate the characteristic impedance of the
sections. Their length should be kept as short as possi-
ble, since this contributes to the constant delay of the
network.

Distance between the horizontally-separated sections
should be of the same magnitude as the ground plates
separation to avoid coupling between sections.

V. ConsTRUCTION OF THE COUPLED LINE SECTIONS

For construction in stripline, between groundplates,
detailed information is available in literature.

For a moderate degree of coupling, the coplanar struc-
ture is used [6], [Fig. 6(a)]. The broadside-coupled
stripline pair permits a higher degree of coupling [7],
[8], [Fig. 6(b) and (c)].

It is thus possible to relate given characteristic im-
pedance and coupling factor with the dimensions of the
stripline pair. The finite thickness of the conductors
may be corrected for, if necessary [9].

The characteristic impedance of the stubs intercon-
necting the sections should come close to the characteris-
tic impedance of the coupled pair. Interconnection of
the ground planes is necessary near the short at the end
of each section.

(b)
[

()
Fig. 6.

VI. ConcLUsION

For delay function approximation, the distributed all-
pass section may be used in the same manner as the
lumped-constant section and makes possible accurate
network synthesis from singularity plots in the com-
plex plane.

AprPENDIX I

The a matrix of (1) is of the following form:
4 B C D~
B A D C

L AC —AD A —B
—AD AC —B  A_

. (28)
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Multiplication of two or more of these matrices, for
two or more sections in cascade, when the condition
1-5 of Section 1I apply, results in matrices of the
same type with only the elements of the first row and
A as parameters.

The transfer function derived here will apply to the
general case of 1-u sections in cascade. The boundary
conditions Us= Uy and I;= — I, substituted in (28) re-
sult in the two port ¥ matrix equation:

Il 2(4+ B)Y(C — D)

Janvary
where
G/ =(Gun);for i=1, 2
G,=(Gu); for 1=1, 2
¢=Section Number [see Fig. 7(a)]

A=A,=A,; the characteristic impedance is constant.

(- ermemslie 50

A(C — D)2 — (4 + B)? _[Ul]

A(C—D)*+ (4+ Bya LU, 29)

Substitution of (32) in (30) gives the transfer function

GG + GGy — GoGy — GGy G+ G+ G+ GY
cos 29 - sin?§ — 4 — sin 6 cos 6
3 A VA
A GYGY + GGy — GG — GGy G+ Go+ G/ + GY -
' cos?0+ b 2 ke : 1sin26—}—j ! 2+*1 + o sin 8 cos 6
A VA
The transfer function, with port 2 terminated in From (4)-(6), we find
YVo=+A:
44 B) — VEC — D) GG + GG — GGy — GGy (Gi1 — G1a)z
Ug Yg £ B) — A — = -
= — L ( — - (30) A (Gi1 — Giax
U Vot Yo (A4 B)+ A — D)
ZGO
Eq. (30) can be used to derive the transfer funct1on for = — oy, (33)
all-pass sections of any order. Zooz
The first-order section: substitution of the matrix , , .
elements of (1) in (30) gives Gi+ Gy "*‘fl + G2 _ 4/<Gu + Gm)
. G12 + G22 . \/A Gll - G12 1
cos § — v/ Aj{—— }sing
( ) = A i /‘/(Gu + G12> 1 n 1 R (34)
—_ 2 — ——— ) .
G+ G G G2
U, cos 0 + \/Aj( 12 A 22> sin 6 1 — 12/ 2 \/Pl \/92
The transfer function becomes
or, applying (4)—(6),
U, o [1 —7tan?6] — jR tan @ 35)
— 7t [ e = .
=2 ( y = Ve —jtand, 31) U, [1 — rtan?0] + jR tan 8
vp+jtand

The second-order section: multiplication of two
matrices as shown in (1) results in the following ex-
pressions for the elements of the over-all 4 X4 matrix:

GG/ — GG,

A = cos? 8 4+ sin? §
G2,G1_G2G1l .
= — sin? 6
LG+ Gy
C=+4j———sinfcosd
G/+Gl
D=——j1—~isin0cos(? (32)

The nth-order section: by repeated matrix multi-
plications the matrix elements for # sections in cascade,
numbered as in Fig. 7(b), are obtained in the following:

An = anAn—l + ann—l + Acncn—l — Aann—l
Bn = aan—l + bnAn—l - ACnDn—l + Adncn—l
Cn = ancn-l + ann—I + CnAn—-l - dan__l

Dn = an-Dn—l + bncn—l - Can——l + dnAn-—L (36)
In (36) the matrix elements of multiple sections are
represented by capital letters, those of single sections by

small letters. It is thus possible to form expressions for
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(4,+B,), (C.,—D,), and U,/ U; for any number of sec-
tions in cascade.
ArpenDIx 11

The roots of numerator and denominator of the
second-order transfer function are complex if (21) is
satisfied.

4r — R2> 0

or

4 r: <1+1>2>0 (37
ot \Woi Vi ' i

Eq. (37) will limit the choice of p; and p; somewhat,
but not severely.

When ps>p1 (37) is always satisfied for p; and p,>1.
When pi>p,, the following table indicates the limita-
tion on the choice of the parameters:

Line Networks in Cascades 29

P1 p2
1 1
<3.81 | 1.1
<6.79 1 1.2
<12.7 1 1.3
<20.8 | 1.5
<67.9 ] 2.0,
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