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The Synthesis of Coupled Transmission Line

All~Pass :Networks in Cascades of 1 to n*

‘~. J. D. STEENAART~, MEMBER, IRE

Summary—A homogeneous coupled line configuration realizing

the characteristics of an all-pass network in the dktributed network

sense is useful for delay equalization in the UHF range. All-pass net-

works of first and second order are presented, while rrth-order net-

works may be realized dkectly or built out of first- and second-order

networks, analogous to the lumped-constant element network tech-

nique.

1. INTRODUCTION

I

N THE UHF RANGE, the need for a delay-

equalizing network has become evident, e.g., for use

in wide-band PCM transmission.

A distributed network consisting of coupled homog-

eneous line sections is used here that allows precise

allocation of the singularities in the complex plane and

is the distributed equivalent to the lumped-constant

all-pass network. All-pass networks (in the distributed

sense) of first, second, or nth order are shown to be

realizable in a very simple way. A delay equalization

network of the nth order may be built by using either

an nth-order section or combinations of lower-order

sections, e.g., n/2 second-order sections.

rCose o

—— I o Coso

1+jGll sin 0 +jGIz sin O

-tjGIz sin 0 +jGY, sin o

The basic structure consists of two symmetrical

parallel conductors interconnected at one end and sym-

metrical between ground planes. .4 single unit of length

1= hl~ is a first-order section. A second-order section

consists of a cascade of two sections of equal length and

characteristic impedance, but with different coupling

factors [1], [2].

In Section II of this paper, the equations of a pair of

coupled lines will be considered and the appropriate

boundary conditions introduced. In Section II 1, the

transfer functions and delay functions are derived. In

Section IV, the synthesis of delay networks consisting

of first- and second-order sections will be discussed.

Details regarding physical construction will be men-

tioned in Section V.
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Fig. 1.

II. COUPLED LINES BETVVEEN GROUND PLANES—

GENERAL CONSIDERATIONS

The four-port network of Fig. 1 (a) with terminals 3

and 4 disconnected can be represented by the following

fourth order a matrix, [3], [~]:

. GIS GII
‘3~Sin0 +j—sinl

A

Cos % o

0 Cos 0

where

(1)

CM i- c,, (720 + cl,
G,, = —x ; G,, = ———

dp,

Clt, C1O and Czo are the capacities per unit length be-

tween conductors [Fig. 1 (b) ]. O =131 is the electrical

length of the line. For the even and odd modes of

propagation in the case of a symmetrical structure, the

characteristic impedances between one conductor and

ground are
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zoo =

[

CIOC20
2 Clz + ——

cl” + C201
or since CIO = C20

Expressed in the susceptances per unit length

The characteristic impedance of one conductor

ground, expressed in the characteristic impedances

odd and even modes of propagation is

—.
z. = dzoezoo

l//.Le
_ —— =.

<C,oc,o + C,,(c,o + C,o)

4
1

—

(3)

are then introduced allowing the derivation of a second-

order y matrix from the fourth-order a matrix. The re-

sulting transfer functions for first-, second- and nth-

order all-pass sections are derived in Appendix I.

III. COCTPLED LINE ALL-PASS %CTIONS OF ORDER l-n

In the following paragraphs the coordinates of the

singularities in the complex plane and the delay vs fre-

quency function will be derived from the transfer func-

tion.

The First Order Section

The transfer function is [see Appendix I, (31) ]

(4)
with

to
jo=j; :

for
for a quarter-wavelength section. Introducing the com-

plex variable

S=a+jo=:(a+ j@) (9)

in (8) gives

(5) v’; – tanhs
;(s) = ~;+ta=. (lo)

The ratio of even to odd mode impedance of the lines

is expressed by The singularities occur at tanh s = i ~~. (11)

z.,
In general, the solution of

GH – G,z
~=—= (6)

zoo Gn + GH
tanh (u +jd) = x +jY

The coupling factor is usually defined as

p–1 Zoe – zoo G,,
k= —-=

—

P+l Z., + Zoo – – G, I “

The following analysis will assume:

is

~=~ln(l+x)’+y’

4 (1 – Z)’+y’

1) The lines are Iossless.

2) Each pair of lines is symmetrical; CIO = C20 (or
Here we obtain

Gll = G,,) .

3) The electrical length of cascaded sections is equal;

(31=62= . . . =6,,.

4) The characteristic impedance of cascaded sections

is equal; 201=202= . . . =2...

5) The coupling factor varies; pl#pz# . . . p..

For cascaded sections, the a matrix may be formed by

multiplication of the a matrices of the individual sec-

tions (Appendix I). The boundary conditions

u, = u,

1~=–11 (7)

1 <;+1
~. +—in=—.

2 ti p-l

Or, expressed in a and u:

6)

—=li2k
O-Jo

(12)

(13)

(14)
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In (13) and (14) the + sign in the expressions for u and

a applies to the zeros of translnission; the — sign to the

natural modes.

The singularities in the s plane are periodic in COO

(Fig. 2), and for a constant u, (a constant length of the

section) can vary in a only, which corresponds to a

variation in peak height accomplished by varying the

coupling between a pair of lines.

The delay vs frequency function is

d
r(w) = ~;

T
— ——

d;
(15)

For a few typical values of p, the delay as a function of

frequency is shown in Fig. 3.

Vlhen coo and CYare given, the factor p may be derived

from (14).
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As an example, a few values of a/tiu and p are tabulated

in the following:

a/u O P

1.19 1.1

0.984 1,2

0.730 1.5

0.561 2.0

0.350 4.0

0.205 10.0.

It is possible to combine a number of first-order sec-

tions of different length (different coo) to approxinlate a

delay function in an interval, e.g., u/tio = 1 to co/oJU = 2

(uO applies to first section only). The resulting curve

will have a period determined by the least common

multiple of the COO’Sused.

The use of second-order sections allows for variation

of delay peak height and position for each section within

certain limits. For a number of sections of equal length

(equal CO,) a periodic delay vs frequency function,

usually preferred in distributed constant network

synthesis, is thus realized.

The Second Order Section

The transfer function (35)

$ (o) = ~–~~~:~~t~ (17)
l–rtan’O+jRt an%

where

Zuol 4P, 1 1
~=— ——

Zlm
-= and R=~=+—
4’1 <PI V’; “

Substitution of the complex variable

S=u+jo=:(a+j[d)
20.)0

results in

The

The

The

112~(s)=:::::;:;:::;;. (18)

zeros of transmission occur at

R “ __-._–.
tanh s = ~ & ~ ~4r –- R2.

natural modes occur at

(19)

(20)

right-hand side of (19) and (20) is complex for

4v– R’>0. (21)
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Eq. (21) does not limit the choice of pl and PZ greatly

as is shown in Appendix II. Substitution of
x

t

3W. o
——— ———

x 0
S PLANE

in (12) gives the coordinates of the

Iarities:

1 Y+l+R
~= +—ln ——

4 r+l —R

following singu-

r

(22)

or

a r+l+R
—=~~ln
@o 2r r+l– R

——.
OJ 1 ~4r – R’

— — tan–l— — + 2k. (23)
~o T r—1

In (22) and (23), the + sign for a and a applies to the

zeros of transmission; the — sign to the natural modes.

The singularities in the s plane (Fig. 4) are periodic in

(JJo.

@P =a,=koOi8 with k=l,3,5, . . . .

It is possible to vary 8 for a constant u,. Thus, the peak

position and the peak height may be varied for a con-

stant C.JO, that is, a constant length of the section.

The delay function
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1

For typical values of PI an d p~, the delay as a function of tan 8

frequency is shown in Fig. 5; ——

To determine pl and p, for given singularities (22) =
tiPL?(%&– <P2) + (V’P2 – 1) (Vz+ <P?)

. (25)

has to be solved. Substitution of <(4p, – 2)<p7, – (p, + p,)

Ai 1 Eq. (25) may be solved for p,:r=— and R =
V’P1

=+2.
V’P1 v’p2

P2 = cothz (2u) .
in (22) gives

With p,, c and O known, p, may then

tanha=<~–<p~–l ing the quadratic equation in ~~1:

(26)

be found by solv-
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p~[tan2 O + (2P, – 1) + 2&(X-~7]
—— —

– v’01”2<pz[(2pz – 1) tan’0 + 1]

+ p,[tan20 + 2P, – 1 – 2tiz(~~] = O. (27)

It is thus possible to determine the physical con-

stants of the second-order sections from a given plot of

singularities and to synthesize a delay network consist-

ing of a number of these second-order sections in se-

quence.

For the examples shown in Fig. 5, the values of u

and O (or a/wO and ti/wO) with the corresponding values

of pl and pz are shown in the following table:

u o cY/wo &)/ql PI p2

ii’1637 &O.4957 ~1042 1 + 0.6844 ~ ~

0.2406 +0.5647 0.1532 1 jt 0.6405 1 5

0.1637 ~0.8763 0.1042 1 j: 0.4421 20 10

0.2406 ~0.9764 0.1532 1 + 0.3784 20 5

The nth-O~der Section

Eq. (36) indicates the expressions for the matrix

elements of a cascade of n sections. The transfer func-

tion may be formed, and the delay function derived

from this in very much the same manner as was done

for the first and second order. The effort involved in

each application will have to be weighed against the

possibility of using combinations (of first- and second-

order sections to achieve the same result.

The limit of the nth-order system for n+ m and

1~0, keeping the total length constant, leads to the

coupled inhornogeneous line. The equations of the nth-

order section will be instrumental in obtaining these, as

is done for the directional coupler by Fel’dshtein [4],

[5]. Due to the different (nonperiodic) frequency

characteristic of the transfer function of such a line,

the present study will not include it.

IV. THE SYNTHESIS OF DELAY NErwoRKs FROM GWEN

SINGULARITIES IN THE COMPLEX PLANE

When the approximation problem has been solved,

preferably realizing a periodic singularity pattern, the

realization of the delay network (following the familiar

method used for lumped-constant all-pass networks)

only requires identification of each singularity in a

horizontal strip of width coo in the complex plane with a

first- or second-order all-pass section, and computa-

tion of the coupling factor values according to the

method of Section III. It may be necessary to readjust

the singularity pattern if values of p are obtained which

are not realizable with known techniques, e.g., in

coupled line structures using broadside coupled strip-

lines.

The coupled line sections need to be interconnected

either vertically or in the horizontal plane. The char-

acteristic impedance of the interconnecting stubs should

closely approximate the characteristic impedance oi the

sections. Their length should be kept as short as possi-

ble, since this contributes to the constant delay of the

network.

Distance between the horizontally-separated sections

should be of the same magnitude as the ground plates

separation to avoid coupling between sections.

V. CONSTRUCTION OF THE COUPLED LINE SECTIONS

For construction in stripline, between groundpla.tes,

detailed information is available in literature.

For a moderate degree of coupling, the coplanar struc-

ture is used [6], [Fig. 6(a)]. The broadside-coupled

stripline pair permits a higher degree of coupling [7],

[8], [Fig. 6(b) and (c) ].

It is thus possible to relate given characteristic im-

pedance and coupling factor with the dimensions of the

stripline pair. The finite thickness of the conductors

may be corrected for, if necessary [9].

The characteristic impedance of the stubs intercon-

necting the sections should come close to the characteris-

tic impedance of the coupled pair. Interconnectic,n of

the ground planes is necessary near the slhort at the end

of each section.

(a)

—
—

(b)

II

(c)

Fig. 6.

VI. CONCLCTSION

For delay function approximation, the distributed all-

pass section may be used in the same manner as the

lumped-constant section and makes possible accurate

network synthesis from singularity plots in the com-

plex plane.

APPENDIX I

The a matrix of (1) is of the following form:

[

.4 B C D-

BADC

1

I

I

AC –AD A –D “

–AD AC –B A_

(28)
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Multiplication of two or more of these matrices, for where

two or more sections in cascade, when the condition

1–5 of Section II apply, results in matrices of the G,’=(GIJ; fori=l,2

same type with only the elements of the first row and

A as parameters. G,=(GlJifori=l,2

The transfer function derived here will apply to the

general case of l-n sections in cascade. The boundary i = Section Number [see Fig. 7(a)]

conditions Us= U4 and 13= – 14 substituted in (28) re-

sult in the two port Y matrix equation: A = Al = Az; the characteristic impedance is constant.

1,

[1
1

[
A(C – D)’ + (A + B)z A(C – D)z – (A + B)z ul

—

Iz –
1[]

2( A+ B)(C– D) A(C– D)’– (A +B)’ A(C– D)z+ (A +B)2d “ U, “
(29)

—

Substitution of (32) in (30) gives the transfer function

G,’GI’ + G,’GI – G,GI – G, G,’ GI+G, +G{+ G,’
Cos 49 + —

U2 A
sin2 e — j

4T
sin 8 cos O

— (OJ —

UI
~“) —

G2’G1’ + G,’GI – GZGI – G2GI’ GI + Gz + G1’ + Gs’
COS20-t

A
—-sinztl+j

4X
sin O cos O

The transfer function, with port 2 terminated in

Yo=dA:

u, Y,l (.4 + B) – dx(c – D)
—

7Z_–– Y,, + Yo= (.4 + B) + <1(C – D)
. (30)

Eq. (30) can be used to derive the transfer function for

all-pass sections of any order.

The first-order section: substitution of the matrix

elements of (1) in (30) gives

co”-@YG’2)sino;(e)=—
coso+-f%’~)sin’‘

or, applying (4)–(6),

(31)

The second-order section: multiplication of two

matrices as shown in (1) results in the following ex-

pressions for the elements of the over-all 4 X 4 matrix:

GZIGI’ – GZG1
A=cos’o+— sin’ O

A

G2’Gl – G2GI’
B= sinz e

C=+j

D= –-j

A

GI + Gz
sin 0 cos O

A

G,’ +- G“
sin e cos O

A
(32)

From (4)–(6), we find

Gz’GI’ + G?fGl – G2GI – GZGI’ (GH – G12)2— —

A (G,, – G,2),

Zool
. —

Z.oz –
– t’ (33)

The transfer function becomes

[1 – rtan20] –jR tan O
;(o)=—

[1 –rtan20]+jRtan0 “
(35)

The nth-order section: by repeated matrix multi-

plications the matrix elements for n sections in cascade,

numbered as in Fig. 7(b), are obtained in the following:

Am = anAn–1 + bnBn–1 + Ac,,Cn–I – AdnDn–1

B. = anBn–1 + bnAn–1 – AcnDn–1 + AdmCn–1

C. = a,,Cn_l + bmD._, + c.A._l – d.B%_l

D. = a.D.–l + b.C.–l – ctiB._l + dRA.-l. (36)

In (36) the matrix elements of multiple sections are

represented by capital letters, those of single sections by

small letters. It is thus possible to form expressions for
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(-4. +B~), (C. –D.), and LJJ UI for any number of sec-

tions in cascade.

APPENDIX II

The roots of numerator and denominator of the

second-order transfer function are complex if (21) is

satisfied.

4r– R2>0

or

—

d( 1
4 ~–

)
=+ LZ2>0.
V’P1 ‘V’P2

(37)
PI

Eq. (37) will limit the choice of pl and pz somewhat,

but not severely.

when p~ >Pl (37) is always satisfied for pl and p,> 1.

When pl > p2, the following table indicates the limita-

tion on the choice of the parameters:

1 I 1

29

<3.81 1.1

<6.79 1.2

<12.7 1.3

<20.8 1.5

<67.9 2.0.
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